Package: spmoran 0.3.1

spmoran: Fast Spatial and Spatio-Temporal Regression using Moran Eigenvectors

A collection of functions for estimating spatial and spatio-temporal regression models. Moran eigenvectors are used as spatial basis functions to efficiently approximate spatially dependent Gaussian processes (i.e., random effects eigenvector spatial filtering; see Murakami and Griffith 2015 <doi:10.1007/s10109-015-0213-7>). The implemented models include linear regression with residual spatial dependence, spatially/spatio-temporally varying coefficient models (Murakami et al., 2017, 2024; <doi:10.1016/j.spasta.2016.12.001>,<doi:10.48550/arXiv.2410.07229>), spatially filtered unconditional quantile regression (Murakami and Seya, 2019 <doi:10.1002/env.2556>), Gaussian and non-Gaussian spatial mixed models through compositionally-warping (Murakami et al. 2021, <doi:10.1016/j.spasta.2021.100520>).

Authors:Daisuke Murakami [aut, cre]

spmoran_0.3.1.tar.gz
spmoran_0.3.1.zip(r-4.5)spmoran_0.3.1.zip(r-4.4)spmoran_0.3.1.zip(r-4.3)
spmoran_0.3.1.tgz(r-4.4-any)spmoran_0.3.1.tgz(r-4.3-any)
spmoran_0.3.1.tar.gz(r-4.5-noble)spmoran_0.3.1.tar.gz(r-4.4-noble)
spmoran_0.3.1.tgz(r-4.4-emscripten)spmoran_0.3.1.tgz(r-4.3-emscripten)
spmoran.pdf |spmoran.html
spmoran/json (API)

# Install 'spmoran' in R:
install.packages('spmoran', repos = c('https://dmuraka.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/dmuraka/spmoran/issues

On CRAN:

4.11 score 36 scripts 762 downloads 4 mentions 20 exports 59 dependencies

Last updated 1 months agofrom:fb777853d1. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 12 2024
R-4.5-winOKNov 12 2024
R-4.5-linuxOKNov 12 2024
R-4.4-winOKNov 12 2024
R-4.4-macOKNov 12 2024
R-4.3-winOKNov 12 2024
R-4.3-macOKNov 12 2024

Exports:addlearn_localbesfbesf_vccoef_marginalcoef_marginal_vcesflsemlslmmeigenmeigen_fmeigen0nongauss_yplot_nplot_qrplot_spredict0resfresf_qrresf_vcweigen

Dependencies:bootclassclassIntcliclustercodetoolscolorspaceDBIdeldirdoParalleldotCall64e1071fansifarverfieldsFNNforeachggplot2gluegtableisobanditeratorsKernSmoothlabelinglatticelifecyclemagrittrmapsMASSMatrixmgcvmunsellnlmepermutepillarpkgconfigproxyR6rARPACKRColorBrewerRcppRcppEigenrlangRSpectras2scalessfspspamspDataspdeptibbleunitsutf8vctrsveganviridisLitewithrwk

Spatial regression using the spmoran package: Boston housing price data examples

Rendered fromboston_sample.pdf.asisusingR.rsp::asison Nov 12 2024.

Last update: 2020-05-31
Started: 2020-05-31

Spatio-temporally varying coefficient modeling using the spmoran package

Rendered fromsample_code_spatiotemporal.pdf.asisusingR.rsp::asison Nov 12 2024.

Last update: 2024-09-25
Started: 2024-09-25

Transformation-based generalized spatial regression using the spmoran package: Case study examples

Rendered fromvignette_spmoran_nongaussian.pdf.asisusingR.rsp::asison Nov 12 2024.

Last update: 2021-09-13
Started: 2021-09-13